## **INVESTIGATION OF** <sup>208,209</sup>Fr

D. A. Meyer<sup>1</sup>, C. W. Beausang<sup>1</sup>, J. J. Ressler<sup>1</sup>, H. Ai<sup>1</sup>, H. Amro<sup>1</sup>, M. Babilon<sup>1,2</sup>, R. F. Casten<sup>1</sup>, G. Gürdal<sup>1,3</sup>, A. Heinz<sup>1</sup>, E. A. McCutchan<sup>1</sup>, C. Plettner<sup>1</sup>, J. Qian<sup>1</sup>, N. Thomas<sup>1,4</sup>, N. V. Zamfir<sup>1</sup>

<sup>1</sup> WNSL, Yale University, 272 Whitney Ave., New Haven, CT 06520
<sup>2</sup> T U Darmstadt, Germany
<sup>3</sup> Clark University, Worcester, MA
<sup>4</sup> University of Surrey, England

A variety of interesting structural phenomena including shape coexistence, shears bands, intruder structures, and superdeformation are predicted for nuclei to the "northwest" of doubly magic  $^{208}$ Pb. The even-even isotopes in this region have been explored far below the N=126 shell closure, but much less information is available for odd-N or odd-Z isotopes. Investigation of the role of the odd proton may lead to a better understanding of observed structures and deformation. A study of Francium (Z=87) isotopes has begun at the Wright Nuclear Structure Laboratory at Yale University using the SASSYER (Small Angle Separator System at Yale for Evaporation Residues) gas-filled separator coupled to the YRAST Ball Ge detector array. Data and preliminary results for  $^{208,209}$ Fr obtained following the  $^{37}$ Cl +  $^{176}$ Yb  $\rightarrow$   $^{208,~209}$ Fr + 4,5n reaction will be presented. This work was supported by the U.S. DOE under Contract No. DE-FG02-91ER-40609.